

Ultrafine Particle Measurement Campaign in the City of Graz using an AVL CPC

D. Wimmer¹, R. Davok¹, M. Cresnoverh¹, S. Lunghammer¹, A. Pein¹ and B. Tschofenig² 1 AVL List GmbH, Hans-List-Platz 1, 8020 Graz Austria; 2 Amt der Steiermärkischen Landesregierung Abteilung 15 Energie, Wohnbau, Technik

Presenter: Dr. Carlos Caroca¹

Drivers & Legislation

WHO global air quality guidelines

Particulate matter (PM_{2.5} and PM₁₀ ozone, nitrogen dioxide, sulfur diox and carbon monoxide

Latest Release: 2021

Air pollution caused <u>4.2 million premature deaths</u> worldwide in 2019. (WHO, <u>Link</u>) Aerosol particles can have severe effects on human health

Governments globally search for countermeasures to reduce the economic burden caused by air pollution (OECD: <u>21 billion USD in 2015</u>, <u>LINK</u>)

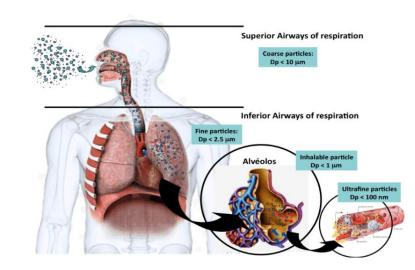
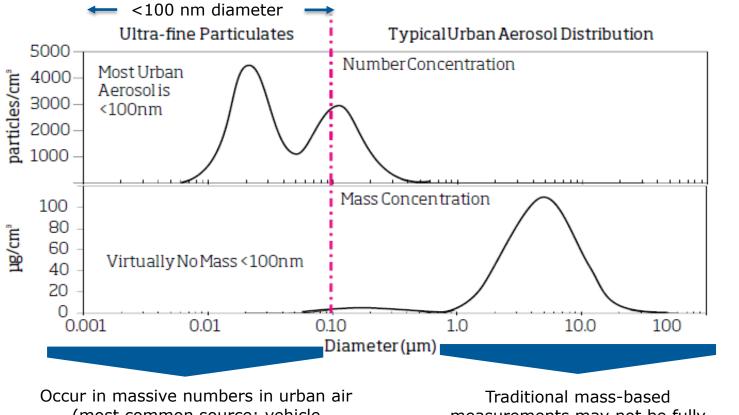


Fig.1: Health effects of aerosol particles (2)


Source: web; 25.04.23; WHO releases updated Global Air Quality Guidelines (rehva.eu) Air Quality Guidelines (AQG) include + cont. limit refinement : SO_2 , NO_2 , O_3 , CO, PM_{10} , $PM_{2.5}$

UItra **F**ine **P**articles(UFP) = <100nm) for the 1st time introduced as "metric of interest"; recommendation to expand container equipment by UFP devices due to shortcomings of other methods

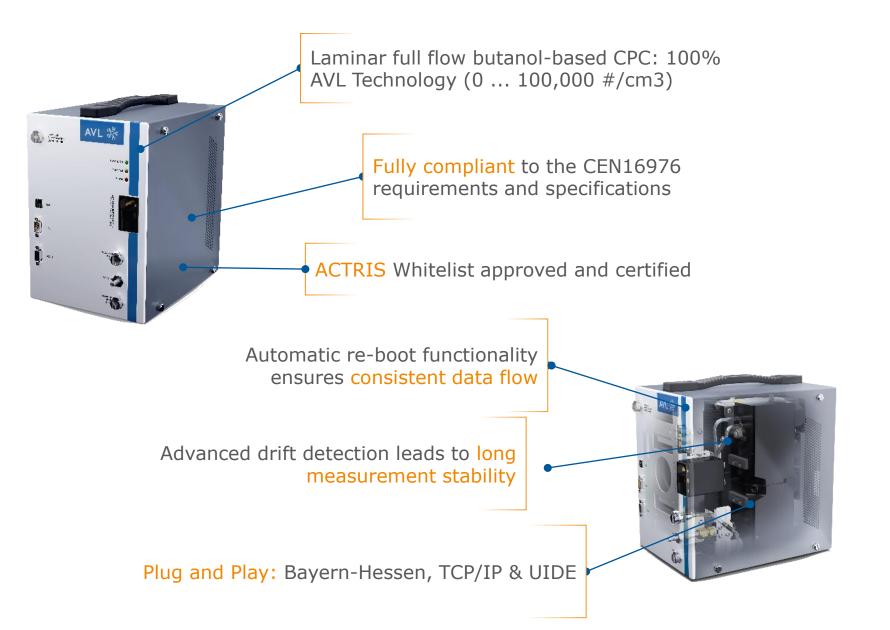
Harmonization of UFP measurement procedure needed: CEN 16976 – technical specification

TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE	CEN/TS 16976		
TECHNISCHE SPEZIFIKATION	August 2016		
ICS 13.040.20			
Englis	h Version		
	tion of the particle number atmospheric aerosol		
concentration of a	timospherie derosor		
Concentration of a Air ambiant - Détermination de la concentration en nombre de particules de l'aérosol atmosphérique	Außenluft - Bestimmung der		
Air ambiant - Détermination de la concentration en	Außenluft - Bestimmung der Partikelanzahlkonzentration des atmosphärischen Aerosols		

Why Ultra-Fine Particles?

Consequent step to link existing Emission Regulation to Ambient Air Monitoring Metric → UFP

Occur in massive numbers in urban air (most common source: vehicle exhaust) but essentially have no mass Traditional mass-based measurements may not be fully representative

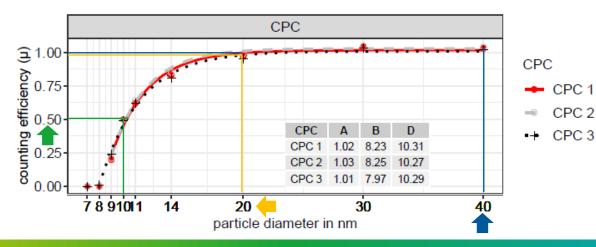


Expertise

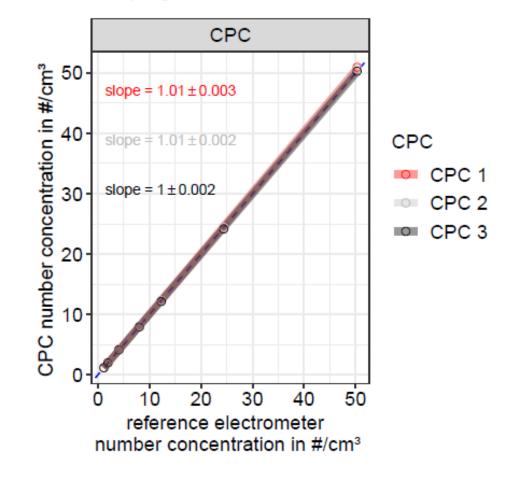
... in Particle Number Counting:

- 15+ years in the field of emission testing
- Installed Base: 1600+ units worldwide
- Applications: Automotive, Non-Road Mobile Machineries and Aviation
- Global Customer's: OEM's, Tier 1, Legal Authorities (e.g.JRC), Universities, Institutes
- Global available service and repair centers

AVL UltraFine Particle Monitor


AVL UFPM Performance Evaluation ACTRIS Compatibility According CEN/TS 16976:2023

Instrument Model	AVL Ultrafine Particle Monitor
Evaluating Unit	WCCAP, Leipzig, Germany


Performance Evaluation Results:

Performance Characteristics	Criteria	CPC1	CPC2	CPC3	Unit
\bigcirc Detection efficiency at 40 \pm 10 nm	$\geq 95\%$	102	103	101	%
$ \textcircled{\ } \underset{\geq \ 50\%}{\text{Particle diameter where efficiency is}} $	$D_{50}=10\pm1~\mathrm{nm}$	10.31	10.27	10.29	nm
— Detection efficiency at $< 20 \text{ nm}$	$\geq 90\%$	97	99	95	%
Concentration response (linearity)	$100\%\pm5\%$	101	101	100	%

Counting Efficiency Curve Fitting

Linearity against reference electrometer

Ultrafine Particle Measurement Campaign in the City of Graz

- Location: Air quality measuring station Graz-Süd Tiergartenweg
- Time: Nov. 22 April 23
- Setup: 2 x UFP devices measuring in parallel (different suppliers)

Main Findings:

- □ Re-filling of butanol frequency
- □ Integration of the UFP device
- □ No UFP "calibration gas" available → long measurement stability is key
- Diurnal cycle shows "traffic fingerprint"
- □ Short-term max. UFP concentrations up to 150.000 #/cm3

Long Measurement Stability

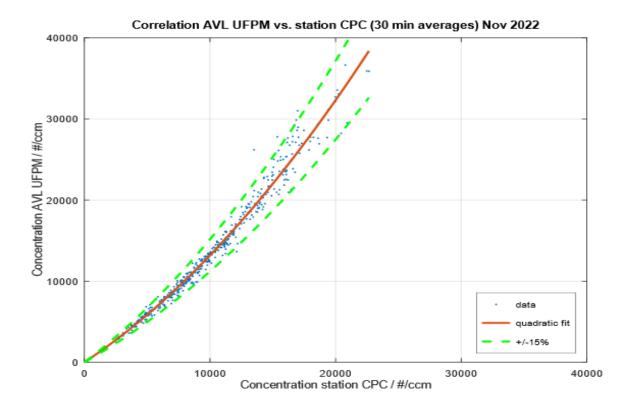


Fig. 4a Correlation between AVL UFPM and station CPC in Graz before service of station CPC

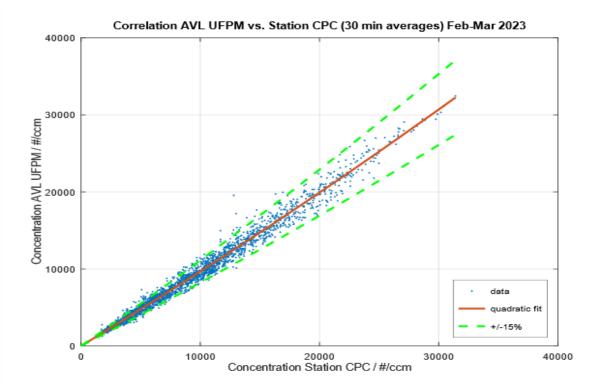


Fig. 4b Correlation between AVL UFPM and station CPC in Graz after service of station CPC

Diurnal Cycle Shows "Traffic Fingerprint"

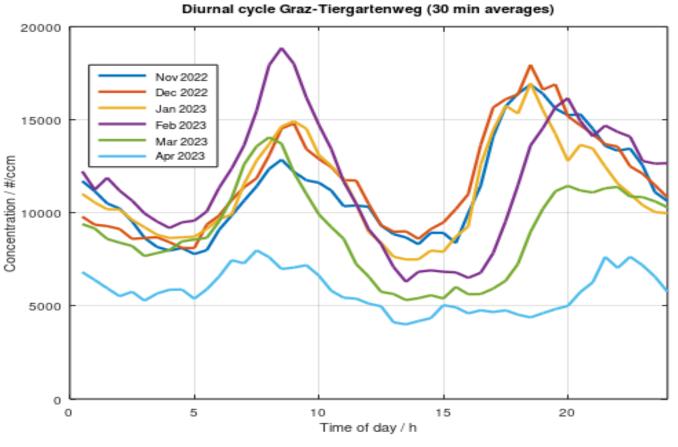



Fig. 6 diurnal cycle from Nov-22 to Apr-23

The measurements show a clear diurnal cycle, with maximum concentrations twice per day. These are most likely related to traffic peaks in the morning and late afternoon.

Short-term max. UFP concentrations

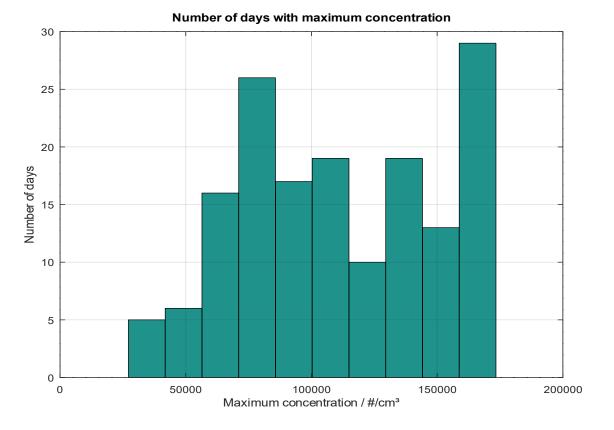


Fig. 5 concentration statistics from the measurements in Graz

- 60 days of the campaign show less than 1.0*10⁵ #/cm³ and therefore are within the linearity of the measurement device.
- 97 days were over 1.0*10⁵ #/cm³
- 29 days exceed even 1.5*10⁵ #/cm³

Conclusions

- Three different AVL UFPM were calibrated at WCCAP and fulfil the CEN/TS 16976:2023 standard, therefore fulfilling ACTRIS conformity
- The 6-month ambient measurements prove that the AVL UFPM shows a very stable performance without an error over a measurement period of 6 months and a 24/7 operation \rightarrow Device still in operation
- Long-term ambient measurements show that no operator interaction was necessary beside refilling the operating fluid bottle
- The calibrated maximum concentrations were exceeded during the urban measurements
- The diurnal cycles show two peaks in the morning and late afternoon, which are most likely due to increased traffic in these time periods

About Us

At AVL, we are one of the world's leading mobility technology companies for development, simulation and testing in the automotive industry, and in other sectors. Drawing on our pioneering spirit, we provide concepts, solutions and methodologies for a greener, safer and better world of mobility.

Thank You