

PM2024 Convegno nazionale, Torino, 28-31 Maggio 2024

Enhancing modelled PM mass closure with CAMx model in the context of the REMY project

Guido Pirovano¹*, Elena De Angelis¹, Matteo Paolo Costa¹, Marco Bedogni², Leonardo Beltrami², Federica Ippolito³, Fulvio Amato³, Chris Emery⁴, Greg Yarwood⁴, Giuseppe Maffeis⁵

1 Ricerca sul Sistema Energetico (RSE) S.p.A., 2 Agenzia Mobilità Ambiente e Territorio (AMAT), Milano, 3 Institute of Environmental Assessment and Water Research, IDAEA, Spanish Research Council (CSIC), 4 Ramboll Environment and Health, 5 TerrAria s.r.l.

LIFE REMY Project

REMY: Reducing Emission Modelling uncertaintY

The final goal of the project is to provide recommendations and guidelines for the compilation of emission inventory with the specific aim to improve air quality model performances for assessment, source apportionment and planning.

CAMx Modelling setup

	Domain		POV-MIL				
	СТМ		CAMx v7.2				
	Baseline year		2017				
Time period		2017					
Meteo		WRF 2017					
Boundary conditions		CHIMERE PREV'AIR					
Gas Chemical mechanism		CB06r5					
Inorganic Aerosol chemistry		ISORROPIA/RADM					
OA mechanisms		SOAP2.2; SOAP3					
Domains		2 nested domains: POV 4x4 km, MIL 1x1 km, 14 vertical le					
		INEMAR2017					
Emissions		ISPRA2015					
			EMEP				
Biogenic emissi	ons		MEGAN				

Road dust resuspension

The estimation of road dust resuspension emissions is based on A1 analysis that carried out an experimental campaign in Milan and Barcelona.

The measured road dust resuspension emission factor in Milan was 21.4 mg/v km, a unique value for all the traffic vehicles and all type of roads.

Resuspension emissions were estimated under the following assumptions:

- PM2.5 resuspension emission factor to 24% of total particulate matter (based on US EPA data)
- Elemental carbon and organic carbon fractions: OC=19% and EC=5%
- CAMx model treats EC and OC as fine particulate matter. In the traffic monitoring stations 25% of OC and 16% of EC is measured as coarse fraction, therefore the speciation profile for resuspension emission has been adapted allocating part of EC and OC to the coarse fraction.

Milano campaign: vertical profile method

Road dust resuspension

 Estimation of road transport PM10 emission increase equal to +44% (based on the Lombardy region inventory)

Non-exhaust PM10 yearly average concentration contribution BASE CASE vs RESUSPENSION SCENARIO

Road dust resuspension

	Scenario	Bias [µg/m³]	Mean Average Error [µg/m³]	Fractional Bias [%]	Fractional Error [%]	Correlation [-]
Verziere	CAMx BASE	-12.83	12.83	-38.80	45.30	0.788
	CAMx RESUSPENSION	-11.39	11.39	-34.10	42.00	0.803
Senato	CAMx BASE	-14.26	14.26	-42.10	48.60	0.757
	CAMx RESUSPENSION	-12.71	12.71	-37.30	45.20	0.780
Pascal	CAMx BASE	-13.26	13.26	-34.40	44.50	0.771
	CAMx RESUSPENSION	-11.67	11.67	-29.60	41.50	0.788

CAMx – OA modelling

SOAP2 (Basecase)

SOAP2 + IVOC

SOAP3

CAMx – OA modelling - Yearly mean concentration

CAMx results - Milano Pascal (UB site)

TOM2.5

CAMx results - Milano Pascal (UB site)

TOM2.5 - DAILY MEAN

CAMx results - Daily mean

San Pietro Capofiume (RB)

San Pietro Capofiume (RB)

CAMx results - Comparison with ACSM

SAN PIETRO CAPOFIUME - DAILY MEAN

CAMx results - Comparison with ACSM

SAN PIETRO CAPOFIUME – MEAN DAY

Un ringraziamento particolare a:

M. Paglione, M. Rinaldi – CNR Bologna C. Colombi, E. Cuccia – ARPA Lombardia F. Scotto – ARPA Emilia Romagna

Grazie per l'attenzione!

guido.pirovano@rse-web.it

TerrAria s.r.l.
CSIC
CSIC