

Proprietà microfisiche dell'aerosol artico durante lo scioglimento del ghiaccio marino Ruolo come CCN e IN

PM2024

XI Convegno Nazionale sul Particolato Atmosferico

Torino, 30 Maggio 2024

Coautori:

¹Ca' Foscari University of Venice, Venice – A. Gambaro
²CNR, Institute of Polar Sciences, Milan, Venice – S. Gilardoni, E. Barbaro
³Chalmers University of Technology, Gothenburg – L. Ickes
⁴Stockholm University, Stockholm, Sweden – F. Mattson, P. Zieger
⁵University of Milano Bicocca – L. Ferrero

Speaker: Diego Fellin^{1,2} <u>diego.fellin@unive.it</u>

Arctic Amplification

La regione artica si sta scaldando ad un ritmo sensibilmente maggiore rispetto alla media globale. L'Arctic Amplification (AA) è l'insieme di fenomeni che contribuisce a questo tasso di riscaldamento accelerato.

(A) L'andamento spaziale dell'andamento della temperatura superficiale

(B) l'andamento della temperatura superficiale media zonale (K^* decade⁻¹)

Lenssen et al., 2019; GISTEMP Team 2021

Arctic Amplification

Tre principali fonti di osservazione:

I dati vengono utilizzati per costruire e alimentare i modelli.

Cloud feedback in Artico

Il cloud feedback contribuisce a:

- Aumentare incertezze e divergenze tra modelli.
- Riscaldamento superficiale.

Riscaldamento superficiale in Artico - NCAR model CCSM4 (2xCO₂)

Necessità di una comprensione più dettagliata dei suoi meccanismi.

Cloud feedback

Aerosol come CCN e IN

Nonostante la sua rilevanza, il ruolo degli aerosol come nuclei di condensazione di nube (CCN) e come nuclei di ghiacciamento (IN) è largamente trascurato nei modelli climatici. Necessità di studiare le **proprietà microfisiche** delle nuvole e degli aerosol per comprendere meglio le dinamiche che ne scaturiscono.

Campionamento

<u>Dataset</u> —> Campagna **ARTofMELT2023** (Atmospheric rivers and the onset of sea ice melt) a bordo della **nave rompighiaccio Oden.**

Periodo	Maggio - Giugno 2023
Dove	Mar Glaciale Artico
Campioni per single particle analysis	13 (2 bianchi)
Campioni per bulk analysis	6 (1 bianco)
Campionatori	Low Pressure Impactor
Dimensioni	Size-segregated

Inizio spedizione

Fine spedizione

Maggio 2023

Giugno 2023

Bulk analysis

Analisi Nano IR

Single particle analysis

Maggio 2023

Giugno 2023

2D imaging

3D imaging

2D imaging

2D imaging

Caratterizzazione chimica

43 μm

NH42SO4_6

Spettri di riferimento

Letteratura

Sperimentali

Bondy et al. 2017

Kirpes et al. 2022

Risultati

- Le particelle della moda di Aitken sono arricchite in carbonio.
- Le prime analisi mostrano la presenza di solfato, solfato d'ammonio probabilmente internally mixed con carbonio organico.
- L'analisi morfologica suggerisce la possibilità di avere external mixture delle particelle.
- Si stima che le particelle fossero liquide durante il campionamento.

Prossimi passi

- > Automatizzare l'elaborazione dei dati per:
 - Velocizzare il processo.
 - Eliminare errori di valutazione dell'operatore, rendendo i dati più robusti e universalmente confrontabili.
- Ampliamento dei dataset con ulteriori misure, anche su altre classi dimensionali.
- ► Integrare i dati ottenuti con altre misure → STXM-NEXAFS, AMS corretta, proprietà ottiche, dati meteo, etc.

Finanziato dall'Unione europea NextGenerationEU

Università Ca'Foscari Venezia

Ringraziamenti

TORINO PM 2024

PM2024

XI Convegno Nazionale sul Particolato Atmosferico

Torino, 30 Maggio 2024

Coautori:

¹Ca' Foscari University of Venice, Venice – A. Gambaro
 ²CNR, Institute of Polar Sciences, Milan, Venice – S. Gilardoni, E. Barbaro
 ³Chalmers University of Technology, Gothenburg – L. Ickes
 ⁴Stockholm University, Stockholm, Sweden – F. Mattson, P. Zieger
 ⁵University of Milano Bicocca – L. Ferrero

Diego Fellin <u>diego.fellin@unive.it</u>