

XI CONVEGNO SUL PARTICOLATO ATMOSFERICO Torino

24 28-31 maggio 2024

Exploiting advanced atmospheric aerosol characterisation to develop cutting-edge approaches for source apportionment

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

SOURCE APPORTIONMENT:

UNIVERSITÀ DEGLI STUDI DI MILANO

Identificazione delle sorgenti e quantificazione del loro contributo alle concentrazioni di PM misurate

Negli ultimi anni: MODELLI A RECETTORE (specialmente la Positive Matrix Factorisation **PMF**) sono tra gli approcci più diffusi per effettuare studi di **source apportionment**

CAMPIONAMENTI STANDARD

Raccolta del PM su **filtro**, Risoluzione temporale = **24 h**

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di fisica

Analisi delle **specie chimiche principali** e presenti in **tracce**

Caratterizzazione chimica completa

Caratterizazione del PM al sito recettore

CARATTERIZZAZIONE AVANZATA

per spingere la caratterizzazione a un livello più dettagliato

Esempi:

Risoluzione temporale
più elevata

 Campioni di particolato in diverse classi dimensionali

 Tecniche analitiche per l'identificazione di specifici composti traccianti di sorgenti di emissione distinte

Tuttavia...

La caratterizzazione avanzata NON è ancora sfruttata al massimo nei modelli

Tuttavia...

La caratterizzazione avanzata NON è ancora sfruttata al massimo nei modelli

Come?

Sviluppo avanzato della PMF: implementazione di nuovi approcci per la versione multi-time resolution PMF

Misure di ¹⁴C su campioni di PM per il source apportionment dell'aerosol carbonioso

Presentazione di Vera Bernardoni

"MISSMARPLE (MIlan Small-SaMple Automated Radiocarbon Preparation LinE for atmospheric aerosol): validazione e primi dati ambientali"

Crova et al. "*MISSMARPLE: Mllan Small-SaMple Automated Radiocarbon Preparation LinE for atmospheric aerosol*". Radiocarbon, in revisione

Sviluppo avanzato della PMF: implementazione di nuovi approcci per la versione multi-time resolution

Positive Matrix Factorisation (PMF)^[1]

INPUT

Matrice X

Dati di concentrazione delle specie chimiche misurate al recettore nei vari campioni

Stessa risoluzione temporale

- X = dati in input
- **G** = contributi temporali

 $x_{sj} = \sum_{k=1}^{n_p} g_{sk} f_{kj} + e_{sj}$

F = profili chimici

E = residui

s → campione j → specie chimica k → fattore (sorgente)

Matrice F

Matrice G Contributo temporale sorgenti

Multi-time resolution PMF^[1]

INPUT

Matrice X

Dati di concentrazione delle specie chimiche misurate al recettore nei vari campioni

Risoluzione temporale nativa

- X = dati in input
- G = contributi temporali
- **F** = profili chimici

 $\mathbf{E} = residui$

s → campione j → specie chimica k → fattore (sorgente)

$$x_{sj} = \frac{1}{t_{s2} - t_{s1} + 1} \sum_{k=1}^{P} \left(f_{kj} \sum_{i=t_{s1}}^{t_{s2}} g_{ik} \right) + e_{sj}$$

 $t_{s1}, t_{s2} \rightarrow$ tempo di inizio e fine del campione s $i \rightarrow$ unità temporale nel campione s

 $t_{s1} - t_{s2} + 1 \rightarrow$ lunghezza del campione in unità temporali

Matrice F Profilo chimico sorgenti

OUTPUT

Matrice G Contributo temporale sorgenti

Multi-time resolution PMF

DISPERSION-NORMALISED MULTI-TIME RESOLUTION PMF

Presentazione

"Applicazione del modello a recettore dispersionnormalised multi-time resolution PMF a dati di PM₁ della Pianura Padana"

Crova et al. "Assessing the role of atmospheric dispersion vs. emission strength in the southern Po Valley (Italy) using dispersion-normalised multi-time receptor modelling". Atmos. Environ. 316 (2024) 120168

Crova et al. "Multi-time and multi-size resolution receptor modeling to exploit jointly atmospheric aerosol data measured at different time resolutions and in multiple size classes". Atmos. Environ., in revisione

Dati di composizione separati dimensionalmente

Dimensioni e composizione chimica delle particelle → strettamente collegate al processo di emissione

COME POSSIAMO SFRUTTARE DATI SEPARATI DIMENSIONALMENTE NELLA PMF?

Multi-time multi-size resolution PMF (MTMS-PMF)

INPUT

OUTPUT

Matrice X

Dati di concentrazione delle specie chimiche misurate al recettore nei vari campioni

Tempo

Risoluzione temporale e

dimensionale native

X = dati in input

 $\mathbf{E} = residui$

- **G** = contributi temporali
- F = profili chimici
- s → campione j → specie chimica k → fattore (sorgente)

$x_{sj} = \frac{1}{t_{s2} - t_{s1} + 1} \sum_{k=1}^{P} \left(\sum_{d=d_{s1}}^{d_{s2}} f_{djk} \sum_{i=t_{s1}}^{t_{s2}} g_{ik} \right) + e_{sj}$

- $t_{s1}, t_{s2} \rightarrow$ tempo di inizio e fine del campione s
- $i \rightarrow$ unità temporale nel campione s
- $t_{s1} t_{s2} + 1 \rightarrow$ lunghezza del campione in unità temporali
- $d_{s1}, d_{s2} \rightarrow$ inizio e fine classe dimensionale del campione s
- $d \rightarrow$ unità dimensionale nel campione s

Matrice F Profilo chimico sorgenti

Matrice G Contributo temporale sorgenti

MTMS-PMF testato su dataset di Ferrara

Misure effettuate dal Dip. di Chimica di Sapienza, Università di Roma e dall'Istituto sull'Inquinamento Atmosferico IIA-CNR^[1]

Matrice F dei profili chimici separata dimensionalmente

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Matrice G dei contributi temporali alla più alta risoluzione temporale

14

Matrice G dei contributi temporali alla più alta risoluzione temporale

Date [gg/mm/aa] (scala non lineare)

Source apportionment separato dimensionalmente

Biomass burning

Nitrate

Traffic

Sulphate and heavy oil combustion

Processing of building materials

Soil and road dust

Fresh sea salt

Aged sea salt

a) Source apportionment - inverno

Potenziali applicazioni di MTMS-PMF

In questo caso studio:

... Ma è possibile utilizzare altri tipi di dataset! Esempio:

In futuro?

Risultati di questo lavoro: passo in avanti nello sviluppo di approcci di source apportionment Però...

...SONO ANCORA NECESSARI TANTI SFORZI!

Grazie a:

Società Italiana di Aerosol IAS

Gruppo di ricerca di Fisica dell'Ambiente (Università degli Studi di Milano)

Roberta Vecchi, Vera Bernardoni, Gianluigi Valli, Seren Çelenlioğlu, Laura Cadeo e tutte le persone che ne hanno fatto parte in questi anni

Tutte le persone di diverse istituzioni con cui ho collaborato

Università di Firenze e INFN-LABEC Firenze; Università di Genova e INFN Genova; tutti i gruppi di ricerca che hanno collaborato nel progetto RHAPS; Dipartimento di Chimica della Sapienza Università di Roma e l'Istituto sull'inquinamento atmosferico IIA-CNR, Roma

Il gruppo LARA dell'Università di Berna Sönke Szidat, Jan Strähl, e tutti i membri del gruppo

Grazie a voi per l'attenzione!

Time unit = 1 giorno (intervallo temporale più breve nel dataset)

Size unit = uno degli stadi dei campioni separati dimensionalmente (frammentazione dimensionale più fine nel dataset)

Biomass burning

Traffic

Nitrate

Sulphate and heavy oil combustion

Processing of building materials

Soil and road dust

Fresh sea salt

Aged sea salt

<0.18 µm	0.18-0.32 µm	0.32-0.56 µm	0.56-1.0 µm	1.0-1.8 µm	1.8-3.2 µm	3.2-5.6 µm	5.6-10 µm
Profile	Profile	Profile	Profile	Profile	Profile	Profile	Profile
% species	% species	% species	% species	% species	% species	% species	% species

Biomass burning - baserun

Biomass burning – continuation run (Cs_s pulled up maximally in Biomass burning)

PM mass distribution

Aerodynamic diameter d_{ae} [µm]

Three-way (o 3D) PMF^[1]

INPUT

Matrice X

Dati di concentrazione delle specie chimiche misurate al recettore nei vari campioni

- **X** = dati in input
- **G** = contributi temporali
- **F** = profili chimici

E = residui

 $s \rightarrow$ campione $i \rightarrow \text{specie chimics}$

$$k \rightarrow$$
 fattore (sorgente)

$$x_{djs} = \sum_{k=1}^{P} f_{djk}g_{ks} + e_{djs}$$

 $d \rightarrow$ classe dimensionale

Matrice F Profilo chimico sorgenti

Matrice G Contributo temporale sorgenti

[1] Pere-Trepat et al. (2007) Atmos. Environ. 41, 5921

THREE-WAY PMF^[1] $x_{djs} = \sum_{k=1}^{p} f_{djk}g_{ks} + e_{djs}$ d = classe dimensionale

