

XI Convegno sul particolato atmosferico

Piombo atmosferico in Artide: potenziali sorgenti e variazioni temporali

<u>M. Grotti</u>¹, F. Ardini¹, M.A. Vecchio¹, M. Mataloni¹, S. Bertinetti², A. Bazzano³, D. Cappelletti⁴, F. Bruschi⁴, F. Vanhaecke⁵

¹ Dip. di Chimica e Chimica Industriale, Università di Genova
² Dip. di Chimica, Università di Torino
³ ARPA Liguria, ⁴ Dip. di Chimica, Biologia e Biotecnologie, Università di Perugia,
⁵ Dep. of Chemistry, Ghent University

30 Maggio 2024

Motivation and context

- \checkmark Legacy and emerging Pb in the Arctic
- ✓ Mitigation at source
- ✓ Marker of PM sources, transport and deposition
- ✓ Gruvebadet observatory
- ✓ Specific projects

ARCTICA, BETHA-NyÅ, TRANSFER, ROSETTA,... (ISP-CNR, UNIFI, UNIGE, UNITO, UNIPG, UNIPI, INFN)

Pb isotopes

Study site

https://www.gruan.org/network/sites/ny-aalesund

Potential source areas

Field work

Tecora ECHO PM₁₀ sampler

90-mm PTFE membrane filters Flow rate: 150 L/min Period: 2010-ongoing Resolution: 4/7 days

To be analyzed

Pb concentration and enrichment

Temporal trend in Pb concentration and crustal enrichment factor in PM₁₀ samples collected at Ny-Ålesund. The histogram bars are median values, while the error bars represent the inter-annual variations (2010-2020 for summer and spring samples; 2018-2020 for winter and autumn samples), expressed as IQR.

Pb isotopic composition

Temporal trend in Pb isotopic composition in PM₁₀ samples collected at Ny-Ålesund in 2010-2020 for summer and spring samples and 2018-2020 for winter and autumn samples.

Anthropogenic and natural contributions

$${}^{208}Pb/{}^{206}Pb = -0.071\frac{1}{EF} + 2.102$$

$${}^{207}Pb/{}^{206}Pb = -0.038\frac{1}{EF} + 0.862$$

Robust regression on median values after grouping by EF classes

End-member	Extrapolation	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb
Anthropogenic	EF = ∞	2.102 ± 0.001	0.862 ± 0.001
Natural	EF = 1	2.031 ± 0.007	0.824 ± 0.009

> %nat e %anthr from the Euclidean distance

The natural contribution

in

Progress

Temporal trend of natural and anthropogenic contributions in PM₁₀ samples collected at Ny-Ålesund (2010-20 spring samples; 2018-2020 for winter and autumn samples).

> These data: 6-26% Previous estimation (2010-2018): 5-16% Also considering Pb-204 values (2017-2018): 1-27%

The anthropogenic sources

A) Rudny Altai region, at the Russian and Kazakhstan borderB) Mixed contributions from US and Canadian sources (35:65)

Pb-204 values

204 206 207 208

Back-trajectory analysis

Back-trajectory analysis results. The percentage of BTs associated to each geographical macro-sector are calculated for each month of the period 2010-2020. The error bars are the corresponding standard deviations, and they represent the inter-annual variations.

Conclusions and perspectives

✓ Pb levels, enrichment and trends are well characterized

- ✓ Anthropogenic sources and their variations are defined
- ✓ The natural source(s) needs to be better investigated
- The Chinese fingerprint needs to be better disentangled or definitively excluded
- Pb data should be integrated with other chemical data on the same samples

Thank you for your attention