

Studio della **frazione solubile** del particolato atmosferico: **composizione** e **speciazione** del **PM**₁₀ **artico**

M. Marafante, S. Bertinetti, L. Carena, D. Fabbri, M. Malandrino, D. Vione, S. Berto

matteo.marafante@unito.it

Studio della **Cazione solubile de**l particolato atmosferico: **composizione e speciazione** del PM₁₀ artico

Studio della **fizzione solubile de**l particolato atmosferico: **composizione e speciazione** del PM₁₀ artico

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Speciation

Studio della **frazione solubile de**l particolato atmosferico: **composizione e speciazione** del **PM**₁₀ **artico**

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Speciation

Studio della **frazione solubile** del particolato atmosferico: composizione e speciazione del PM₁₀ artico

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Speciation

Formate⁻ Cl⁻ Oxalate²⁻ NO₃⁻ PO₄³⁻ NO₂⁻ SO₄²⁻ Malonate²⁻ Acetate⁻ F⁻ Br⁻ NH₄⁺

Studio della **frazione solubile** del particolato atmosferico: **composizione e speciazione** del **PM**₁₀ **artico**

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY **Speciation**

Workflow

Sampling campaign

29 PM_{10} samples were collected during 2012 on 90 mm PTFE filters

 $21/04/2012 \longrightarrow 8/09/2012$

Tecora ECHO PM High volume aerosol sampler Sampling time ~ 4 days Sampling flux ~ 200 l min⁻¹ Average sampling volume = 1050 m³

Gruvebadet

CC

Extraction procedure

Extraction procedure

CCC TR16269:2011 Protocol

15m

6

Quantitative Analysis

Quantitative Analysis

Speciation

Different type of thermodynamic equilibrium have been considered protonation equilibria $qL^{z-} + rH^+ \leftrightarrows [H_rL_q]^{r-qz}$ hydrolitic species formation $pM^{n+} + qH_2O \leftrightarrows [M_p(OH)_q]^{np-q} + qH^+$ $pM^{n+} + qL^{z-} + rH^{+} \leftrightarrows [M_pL_qH_r]^{np+r-qz}$ complexes formation solids formation $[M_p(OH)_q]^{np-q} \hookrightarrow pM^{n+} + qOH^{-}$ $K_{ps} = [\mathrm{M}^{\mathrm{n}+}]^{\mathrm{p}} [\mathrm{OH}^{-}]^{\mathrm{q}}$

CC

 $\beta_{HL} = \frac{\left[H_r L_q^{r-qz}\right]}{\left[L^{z-}\right]^q \left[H^+\right]^r}$ $\beta_{MOH} = \frac{[M_{p}(OH)_{q}^{np-q}][H^{+}]^{r}}{[M^{n+}]^{p}}$ $\beta_{MLH} = \frac{[M_{p}L_{q}H_{r}^{np+r-qz}]}{[M^{n+}]p[L^{z-}]q[H^{+}]r}$

7

Speciation

Different type of **thermodynamic equilibrium** have been considered

CC

C	protonation equilibria	For $+ H^+ \leftrightarrows$ HFor	$\beta_{HL} = \frac{[\mathrm{H_rL_q}^{\mathrm{r-qz}}]}{[\mathrm{L^{z-}}]^{\mathrm{q}}[\mathrm{H^+}]^{\mathrm{r}}}$
C	• hydrolitic species formation	$Fe^{3+} + 2H_2O \leftrightarrows [Fe(OH)_2]^+ + 2H^+$	$\beta_{MOH} = \frac{[M_{p}(OH)_{q}^{np-q}][H^{+}]^{r}}{[M^{n+}]^{p}}$
C	complexes formation	$Cu^{2+} + Cl^{-} \leftrightarrows [CuCl]^{+}$	$\beta_{MLH} = \frac{[M_{p}L_{q}H_{r}^{np+r-qz}]}{[M^{n+}]^{p}[L^{z-}]^{q}[H^{+}]^{r}}$
	solids formation	$[Al(OH)_3]_{(s)} \leftrightarrows Al^{3+} + 3OH^{-}$	$K_{ps} = [\mathbf{M}^{\mathbf{n}+}]^{\mathbf{p}} [\mathbf{O}\mathbf{H}^{-}]^{\mathbf{q}}$

riticall					Sp	ecies Settings	Calculate)												
	Options	Compo	onents	Spec	ies															
	N° Components 20	-																		
cicall	N° Species 188	Name	Charge		Solution Species															
	N° Solid Species 7 🗘	Na	1	-	Ignored	Name	LogB Sigma Ref. Ionic Str.			. CGF DGF EGF N			Na	Va K Mg Ca Mn Cu Zn						Fe
all		к	1	0		(SO4)(H)	1.987	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (0 0	0	0	
		Mg	2	1		(PO4)(H)	12.35	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (0	0	0	
		Са	2	2		(PO4)(H)2	19.55	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (0	0	0	
	Ref. Ionic Strength 0.00000	Mn	2	3		(PO4)(H)3	21.7	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (0	0	0	
	A 0.0000	Cu	2	4		(Ac)(H)	4.74	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (0	0	0	
	в 0.0000	Zn	2	5		(For)(H)	3.72	0.0	0.0	0.0	0.0	0.0	0	0	0	0 0	0 0	0	0	Fe 0 0 0 0 0 0 0 0
	c0 0.0000	Fe	3	6		(Ca)(OH)	-12.69	0.0	0.0	0.0	0.0	0.0	0	0	0	1 (0	0	Fe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	c1 0.0000	AI	3	7		(Mg)(OH)	-11.44	0.0	0.0	0.0	0.0	0.0	0	0	1	0 (0	0	0	Fe 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	d0 0.0000	CI	-1	8		(Mg)4(OH)4	-39.71	0.0	0.0	0.0	0.0	0.0	0	0	4	0 (0 0	0	0	
	d1 0.0000 🗘	NO2	-1	9		(Cu)(OH)	-7.7	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (0 1	0	0	
	e0 0.0000 🗘	NO3	-1	10		(Cu)(OH)2	-17.3	0.0	0.0	0.0	0.0	0.0	0	0	0	0 () 1	0	0	
	e1 0.0000	SO4	-2	11		(Cu)(OH)3	-27.8	0.0	0.0	0.0	0.0	0.0	0	0	0	0 () 1	0	0	
	0	PO4	-3	12		(Cu)(OH)4	-39.6	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (0 1	0	0	
		For	-1	13		(Cu)2(OH)2	-10.36	0.0	0.0	0.0	0.0	0.0	0	0	0	0 (2	0	0	
		Ac	-1	14		(Mn)(OH)	-10.59	0.0	0.0	0.0	0.0	0.0	0	0	0	0 1	0	0	0	
		Mai	-2	15		(Mn)(OH)2	-22.2	0.0	0.0	0.0	0.0	0.0	0	0	0	0 1	0	0	0	
		UX	-2	16		(Mn)(OH)3	-34.8	0.0	0.0	0.0	0.0	0.0	0	0	0	D 1	0	0	0	
		н	1	17		(Mn)(OH)4	-48.3	0.0	0.0	0.0	0.0	0.0	0	0	0	0 1	0	0	0	

Sample 8 – 21st April

(cc)

Overall

(Fe)(OH)₂⁺ - sample #29

The species that have formation < 1% were not considered

Seasonality

CC

The atmospheric composition over the Arctic region changes significantly over the year, due to strong variability in the environmental conditions (atmospheric stability, temperature, sunlight irradiation) among the seasons. Moreover, some sources shown activity only during some period (e.g., biotic emission) or change drastically with season (e.g., anthropic emission).

11

Seasonality

 $\Delta =$ Spring samples Speciation – Summer sample Speciation

Sulfate, oxalate precipitation of Al(OH)₃, Cu(OH)₂, and Fe(OH)₃

hydrolytic forms, free metals, HPO₄²⁻

Experimental extraction volume

Considering 1050 m³ of air collected for each samples, they correspond about **14 mg·m³** of Aerosol Liquid Water Content (ALWC)

ISORROPIA

Diluition correction

The concentration of the investigated metals reflects their origin: those associated with the marine source (Na, K, Mg, and Ca) reach higher concentrations. The other components, associated with crustal and anthropogenic sources, often have lower concentrations but show seasonal variability

The higher metals' concentration in the spring samples promotes the formation of species with sulfate and oxalate and the precipitation of hydrolytic species, while soluble hydrolytic species are enhanced in summer

The speciation models suggest an important role of **oxalate** as ligand for stabilizing Al³⁺, Fe³⁺, and Cu²⁺ in solution, especially in high concentrate solutions

preliminary results that are useful to define the main species that could be formed in solution

Analytical and Bioanalytical Chemistry (2024) 416:1389–1398 https://doi.org/10.1007/s00216-024-05131-0

RESEARCH PAPER

Check for updates

Chemical characterization and speciation of the soluble fraction of Arctic $\ensuremath{\mathsf{PM}_{10}}$

Matteo Marafante¹ · Stefano Bertinetti¹ · Luca Carena¹ · Debora Fabbri¹ · Mery Malandrino¹ · Davide Vione¹ · Silvia Berto¹

Received: 13 October 2023 / Revised: 17 December 2023 / Accepted: 8 January 2024 / Published online: 16 January 2024 © The Author(s) 2024

Abstract

The chemical composition of the soluble fraction of atmospheric particulate matter (PM) and how these components can combine with each other to form different species affect the chemistry of the aqueous phase dispersed in the atmosphere: raindrops, clouds, fog, and ice particles. The study was focused on the analysis of the soluble fraction of Arctic PM₁₀ samples collected at Ny-Ålesund (Svalbard Islands, Norwegian Arctic) during the year 2012. The concentration values of Na⁺, K⁺, NH₄⁺, Ca²⁺, Mg²⁺, Mn²⁺, Cu²⁺, Zn²⁺, Fe³⁺, Al³⁺, Cl⁻, NO₂⁻, NO₃⁻, SO₄²⁻, PO₄³⁻, formate, acetate, malonate, and

Acknowledgement

Organizing and scientific committee

Co-authors Dr. Bertinetti Dr. Carena Prof.ssa Fabbri Prof.ssa Malandrino Prof. Vione

Supervisor Prof.ssa Berto

Thank you !!!

