

XI CONVEGNO SUL PARTICOLATO ATMOSFERICO

IAS - Società Italiana di Aerosol Torino, 28-31 Maggio 2024

Bioaerosol e ChAMBRe: una camera di simulazione atmosferica per studiare la vitalità batterica in diverse condizioni ambientali

V. Vernocchi¹

E. Abd El^{1, 2}, M. Brunoldi^{1, 2}, E. Gatta², M. Irfan², T. Isolabella^{1, 2}, F. Mazzei^{1, 2}, D. Massabò^{1, 2}, F. Parodi¹, P. Prati^{1, 2}

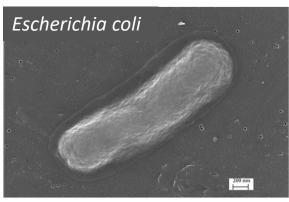
¹Istituto Nazionale di Fisica Nucleare, Sezione di Genova ²Università degli Studi di Genova, Dipartimento di Fisica

Bioaerosol: batteri

Bioaerosol: aerosol di origine biologica

Ruolo importante nell'atmosfera:

Concentrationi > 10⁴ cells m⁻³ over land


Dimensioni ridotte (micrometriche) → lunghi tempi di residenza in atmosfera

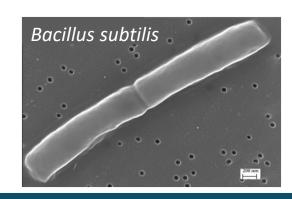
Vitalità batterica e qualità dell'aria

Vitalità batterica può dipendere dall'interazione tra batteri e altri componenti atmosferici e/o inquinanti Differenti condizioni atmosferiche possono influenzare la vitalità batterica

Vitalità ↔ abilità di una specie batterica di sopravvivere

Batteri patogeni: abilità di una specie batterica di sopravvivere e <u>mantenere la propria patogenicità</u> Impatto su: ecosistemi, salute (es: malattie infettive)

Proxy non patogeni di tipici batteri atmosferici


Gram (-)

Gram (+)

E. coli

B. subtilis

P. fluorescens

Camera di Simulazione Atmosferica

Consente di produrre condizioni chimico/fisiche controllate e realistiche

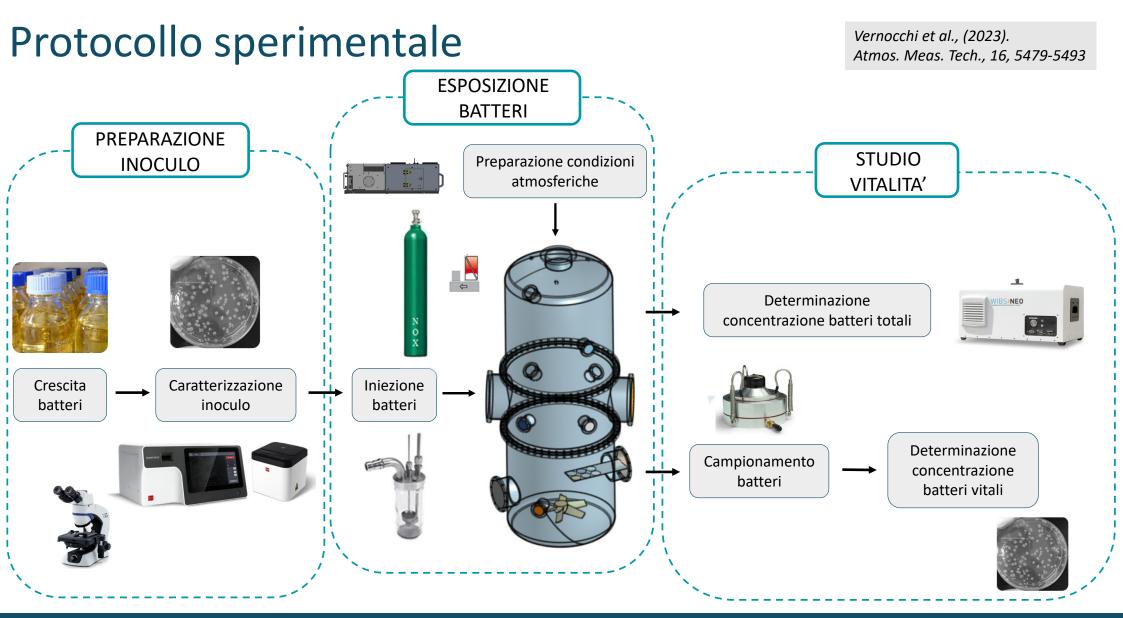
Simulare situazioni reali

Studiare interazione tra componenti atmosferici

ChAMBRe

Chamber for Aerosol Modelling and Bio-aerosol Research

L'unica ASC in Italia; ChAMBRe è la **prima ASC** specificamente progettata per **studi sul bioaerosol**, come studi sull'interazione tra bioaerosol e inquinanti.


- Volume $\approx 2.2 \text{ m}^3$
- Acciaio Inox

POSTER SESSION #2, pos.1 Abd El E. et al.

https://labfisa.ge.infn.it/index.php/chambre

Preparazione inoculo

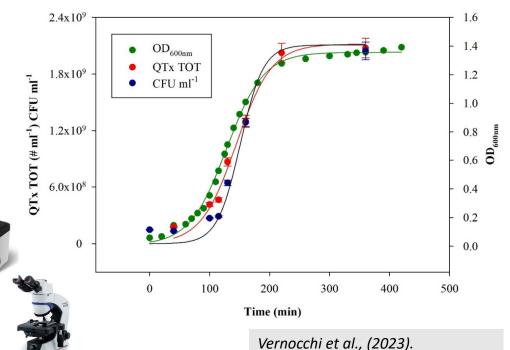
Crescita batteri

- Brodo di coltura ceppo batterico
- Crescita esponenziale: OD(600nm) ≈ 0.5 (spettrofotometro)

VITALI

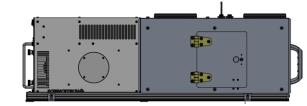
TOTALI

Centrifugazione e risospensione in soluzione fisiologica


Caratterizzazione inoculo

- Concetrazione batteri totali e vitali: cell cm⁻³
 - Quantom Tx Cell counter
 - Microscopio con sonde live & dead
- Concentrazione batteri vitali: CFU ml⁻¹
 - o Conta su piastre Petri

Talk Gatta E. et al.

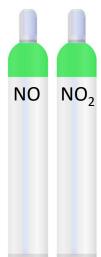

rapporto delle concentrazioni nell'inoculo

Atmos. Meas. Tech., 16, 5479-5493

Esposizione batteri in ChAMBRe

Preparazione condizioni atmosferiche

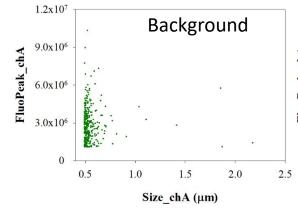
- Baseline
 - Aria pulita
 - Sensibilità del protocollo sperimentale
 - o Riferimento per determinare cambiamenti nella vitalità batterica
- Inquinanti gassosi
 - o NO e NO₂: 900 e 1200 ppb (costanti con sistema di feedback control)
- Radiazione solare
 - Solar simulator

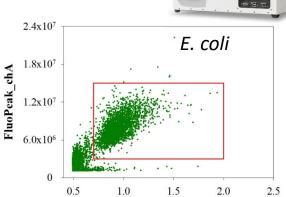


Iniezione batteri

• Nebulizzatore Slag: controllo automico del flusso di aria e siringa con pompa automatizzata

Danelli et al., (2021). Atmos. Meas. Tech., 14, 4461–4470





Studio vitalità

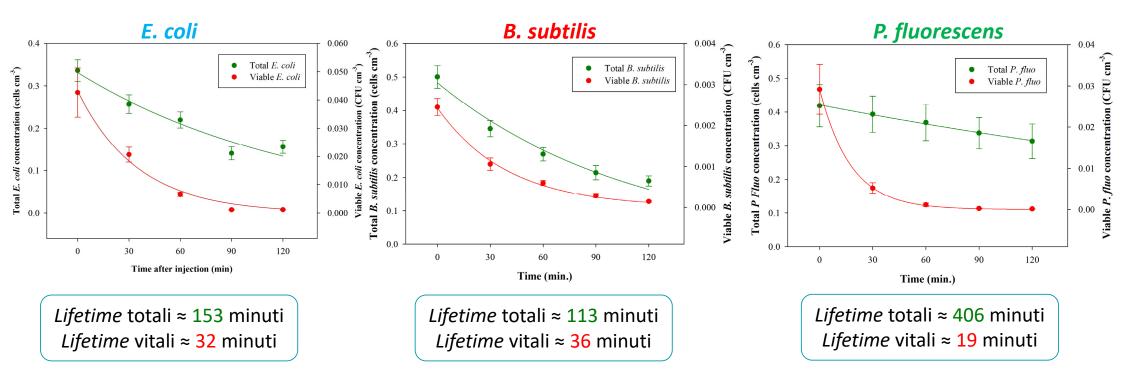
Determinazione concentrazione batteri totali

- WIBS monitor online per bioaerosol
- · Analisi dati con software dedicato
 - o Procedura specifica per ogni ceppo batterico
 - o Concentrazione batteri totali in funzione del tempo
 - o Cells cm⁻³

Size chA (µm)

Determinazione concentrazione batteri vitali

- Campionamento attivo su piastre Petri mediante impattore Andersen
 - o A tempi fissati: 0, 30, 60, 90 e 120 minuti
 - o CFUs cresciute dopo incubazione overnight
 - o CFU cm⁻³

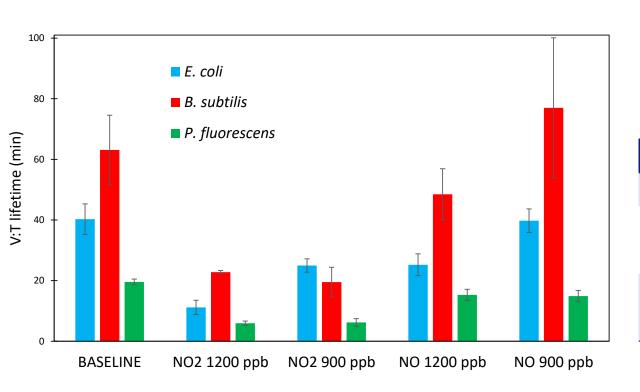

(tempo) in ChAMBRe

VITALI

TOTALI

Baseline

$$C(t) = C_0 e^{\frac{t}{\tau}}$$
 lifetime

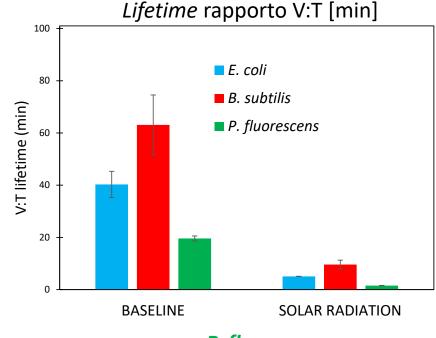


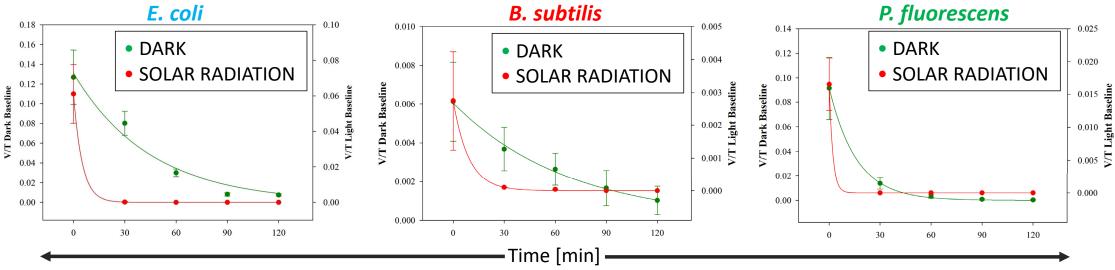
Vernocchi et al., (2023). Atmos. Meas. Tech., 16, 5479-5493

Sensibilità del protocollo sperimentale ≈ 12%

Inquinanti gassosi

Cambiamenti nella vitalità dovuti all'esposizione ad inquinanti sono valutati in termini di cambiamenti del *lifetime* del rapporto V:T


Lifetime rapporto V:T [min]


EXPERIMENT	E. coli	B. subtilis	P. fluorescens
Baseline	40 ± 5	63 ± 11	20 ± 1
NO ₂ 1200 ppb	11 ± 2	23 ± 1	6 ± 1
NO ₂ 900 ppb	25 ± 2	20 ± 5	6 ± 1
NO 1200 ppb	25 ± 4	48 ± 8	15 ± 2
NO 900 ppb	26 ± 3	77 ± 23	15 ± 2

Radiazione solare

Riduzione significativa nella vitalità batterica


La radiazione solare è in generale riconosciuta come un fattore abiotico avente effetti negative su alcuni ceppi batterici

Conclusioni

- Sviluppo di un protocollo sperimentale per studiare gli effetti della qualità dell'aria sulla vitalità batterica utilizzando una ASC
- Studi sistematici su differenti ceppi batterici (modelli non patogeni)
- Valutazione effetti di diverse condizioni atmosferiche e altri inquinanti (non solo gassosi)

The work has been funded by EU - Next Generation EU Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures" - Project IR0000032 - ITINERIS - Italian Integrated Environmental Research Infrastructures System - CUP B53C22002150006.

The authors acknowledge the Research Infrastructures participating in the ITINERIS project with their Italian nodes: ACTRIS, ANAEE, ATLaS, CeTRA, DANUBIUS, DISSCO, e-LTER, ECORD, EMPHASIS, EMSO, EUFAR, Euro-Argo, EuroFleet Geoscience, IBISBA, ICOS, JERICO, LIFEWATCH, LNS, N/R Laura Bassi, SIOS, SMINO.