Impact of shifting HO₂/RO₂ regime on α-pinene photooxidation products and their contribution to Secondary Organic Aerosol formation

¹V. Geretti, ²Y. Baker, ²S. Kang, ³T. Bannan, ³A. Voliotis, ²S. Zorn, ¹E. Tsiligiannis, ¹M. Priestley, ²T. Mentel, ³G. McFiggans, ¹C. Wu, and ¹M. Hallquist.

¹ University of Gothenburg, Gothenburg, 405 30, Sweden

² Institute for Energy and Climate Research, IEK-8 Troposphere, Forschungszentrum Juelich GmbH, Juelich, 52428, Germany

³ University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Contact: veronica.geretti@gu.se

Composti Organici Volatili e Aerosol Organici Secondari

α -pinene:

COV, 50% delle emissioni globali di monoterpeni. Contribuisce significativamente alla formazione di SOA.

SOA:

Particelle liquide o solide create in atmosfera dall'ossidazione dei COVs. Frazione sostanziale del particolato sottile.

Influenzano il bilancio radiativo globale con effetti incerti

- sul clima
- Diminuiscono la qualita' dell'aria
- Nocivi per la salute

Composti Organici Volatili e Aerosol Organici Secondari

Camere di ossidazione per capire la formazione di SOA dall' α -pinene

Low HO_{2}/RO_{2} ratio

High HO₂ /RO₂ ratio

ROOH	R=O	RC	OR'	RC	2	ROOH	HO ₂
HO ₂	RO ₂	HO ₂	RC	2	HO ₂	R=O	ROOR'
R=O	RO	н ц НО	ا	1 0 2	RC	OH R	10 ₂
ROC	DR'	OH	RO ₂	ROI	H HO	2	ROOH
RO ₂ ROOH	HO ₂	RO ₂	ROO	R'	HO ₂	RO ₂ ROOF	RO ₂

La maggior parte degli studi

- <u>Dominanza di RO₂</u>
- Mancanza di HO_2 , $HO_2/RO_2 > 1$ in atmosfera
- Favorita formazione di prodotti di accrescimento → bassa volatilità

- <u>Condizioni più simili all'atmosfera</u>
- Rapporto HO_2/RO_2 piu elevato
- Diminished path to low volatile compounds

SOA constituents and yield?

McFiggans et al., (2019); Schervish & Donahue, 2021

α -pinene OH oxidation in low and high HO₂/RO₂

• SAPHIR* continuously stirred tank reactor

low HO₂/RO₂ ratio (1:100) high HO₂/RO₂ ratio (1:1)

Aggiunta di aerosol seeds = condensation sink.

Novel concept: concentrazione degli OH mantenuta costante per avere la stessa reattivita del α -pinene⁵.

- Steady-state conditions
- 50% RH, 20°C
- 10 ppb α-pinene
- (NH₄)₂SO₄ seed particles

METHODS

- Filter Inlet for Gases and AEROsols CIMS^{3*}
 - Simultaneous measurement of gas and particle phase
 molecular composition
 - o **lodide** ionization reagent
 - Detection of mainly semi-volatile VOCs (SVOCs)

→ Particle phase: in presenza di seeds

- Multi-scheme Ionization Inlet- CIMS*
 - Gas phase measurements molecular composition
 - o Nitrate ionization reagent
 - Detection of Highly Oxidized Molecules (HOMs)

→ Gas-phase in assenza e in presenza di seeds → condensation sink

Figure 1: Distribution of α -pinene oxidation products in low HO₂/RO₂ of FIGAERO I⁻ CIMS and NO₃⁻ CIMS arranged by their number of carbons and oxygens. Size scaled by signal intensity.

*Chemical Ionization Mass Spectrometry

Results of α -pinene from low to high HO₂/RO₂ regime

Particle phase

- Effect of high HO₂/RO₂ regime on products' distribution
 Monomers C₁₀
 Accretion products C_{17.18.19.20}
- Particle phase & gas phase
 - Effect on potential SOA: comparison FIGAERO I⁻ CIMS (particle phase) to NO₃⁻ CIMS (gas phase)
 - Comparability of the two methods

General effect of high HO_2/RO_2 on products' distribution

Figure 2: mass spectra of α -pinene oxidation products under low and high HO₂/RO₂ ratio in the particle phase. Zoom into the accretion products range.

General effect on product's distribution

Figure 3: α -pinene oxidation products' signal in high HO₂/RO₂ grouped by their number of carbons. Monomers C=10, fragments 4<C<9, and accretion products 17<C< 20.

- Monomeri: aumentata formazione di idroperossidi ^{R4} e ridotta quella di carbonili e alcol^{R1}
- Ridotta frammentazione^{R2} e formazione di prodotti di accrescimento^{R3}

$$R^{1}RO_{2} + R'O_{2} \rightarrow R'-OH + R=O + O_{2} (or R-OH + R'=O + O_{2})$$

$$R^{2}RO_{2} + R'O_{2} \rightarrow RO + R'O + O_{2}$$

$$R^{3}RO_{2} + R'O_{2} \rightarrow ROOR' + O_{2}$$

$$R^{4}RO_{2} + HO_{2} \rightarrow ROOH + O_{2}$$

Effetto totale SOA?

Effect of high HO_2/RO_2 on potential SOA

Particle phase signal (FIGAERO I⁻CIMS) ridotto del 22% a causa della quasi totale soppressione dei prodotti di accrescimento.

Particle phase stimata dalla riduzione della gas-phase (NO₃⁻ CIMS) del 28% in presenza dei seeds. Ridotta anch'essa a causa della riduzione dei prodotti accrescimento.

Riduzione dei SOA del 25% con alto HO_2/RO_2 rispetto che con basso HO_2/RO_2

Comparison FIGAERO I⁻ CIMS and NO₃⁻ CIMS condensation

- Fraction remaining (FR): condensazione dei prodotti calcolata dalla riduzione del gas-phase signal quando vengono introdotti i seeds. Questa riduzione dovrebbe tradursi in aumento di particle phase signal.
- Particle fraction: frazione del particle-phase signal sul segnale totale del composto (gas + particle-phase signal)

La riduzione del segnale nella gas-phase per condensazione, corrisponde all'incremento di segnale in particle-phase

CONCLUSIONE

low HO_2/RO_2 ratio (1:100)

high HO₂/RO₂ ratio (1:1)

- La riduzione di RO₂ e l'aumento di HO₂ causano una riduzione della formazione dei prodotti di accrescimento del 70%. Questo porta ad una riduzione dei SOA del 25%.
- I due metodi utilizzati mostrano che la condensazione sui seeds corrisponde alla formazione di particolato e dimostrano l'utilita dell'utilizzo complementare del FIGAERO I⁻CIMS e NO₃⁻ CIMS.
- Queste osservazioni suggeriscono una sovrastima dei SOA nella maggiorparte degli studi a causa della dominanza di RO₂ e mancanza di HO₂. Le misurazioni in situ e i modelli non riflettono i risultati ottenuti nelle smog chambers, quindi l'utilizzo di queste condizioni piu' simili all'atmosfera puo' aiutare a comprendere meglio i meccanismi di formazione del SOA atmosferico.
- Le stesse condizioni sono state applicate in presenza di diversi livelli di NOx. Stay tuned for updates!

GRAZIE PER L'ATTENZIONE

REFERENCES: Capouet et al., 2008; Ehn et al., 2014; F.D. Lopez-Hilfiker et al., (2013) & (2015); Jokinen et al., 2015; McFiggans et al., (2019); Schervish & Donahue, 2021.